rekurencyjny wzór
 
Encyklopedia PWN
rekurencyjny wzór,
mat. wzór wyrażający ogólny (n-ty) wyraz ciągu za pomocą wyrazów go poprzedzających;
najczęściej spotykanymi w.r. są wzory postaci: un + k = a1un + k –1 + a2un + k –2 +... + akun, gdzie a1, ... , ak — stałe, pozwalające obliczyć każdy wyraz uk + n, gdy są znane k ≥ 1 pierwszych wyrazów ciągu; sam ciąg, którego wyrazy są związane tego rodzaju zależnością, nazywa się ciągiem rekurencyjnym (lub ciągiem zwrotnym); przykładem ciągu rekurencyjnego jest ciąg Fibonacciego.
zgłoś uwagę

Znaleziono w książkach Grupy PWN

Trwa wyszukiwanie...  
Przeglądaj encyklopedię
Przeglądaj tabele i zestawienia
Przeglądaj ilustracje i multimedia